Studienverzeichnis und Sammlung technischer Datenblätter

Wir wollen jederzeit sicherstellen, dass unsere Produkte sicher sind und funktionieren.

Aus diesem Grund finden Sie auf dieser Seite eine ausgewählte Liste an Studien und sonstigen Fachquellen welche unsere Entscheidung auf Metall 3D-Druck zu setzen beeinflusst haben.

Nach wie vor, sind wir der Meinung, dass gedruckte Teile für die zahnmedizinische Verwendung besser geeignet sind als gegossene. Der Ionenaustausch, gerade unter Bedingungen mit niedrigen PH-Werten oder hoher Fluoridkonzentration, ist massiv geringer als bei gegossenen Teilen (bis zu 5x in vitro). 

Homogeneres, härteres Material, mit höherer Streckgrenze und höherem Elastizitätsmodul ergibt langlebige Lösungen auch für bewegliche Teile wie Teilprothesengerüste. Mehr Leeway in nicht optimalen Situationen bevor etwas bricht oder sich verformt.

Die Absenz von Lunkern und die generell viel höhere Dichte, zusammen mit der hohen Prozesssicherheit machen für uns die Eckpfeiler eines idealen Materials aus!

Al Jabbari, Y. S [Y. S.], Koutsoukis, T [T.], Barmpagadaki, X. & Zinelis, S [S.] (2014). Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dental materials : official publication of the Academy of Dental Materials, 30(4), e79-88. https://doi.org/10.1016/j.dental.2014.01.008

Aldhohrah, T., Yang, J., Guo, J., Zhang, H. & Wang, Y [Yan] (2021). Ion release and biocompatibility of Co-Cr alloy fabricated by selective laser melting from recycled Co-Cr powder: An in vitro study. The Journal of Prosthetic Dentistry. Vorab-Onlinepublikation. https://doi.org/10.1016/j.prosdent.2021.09.003

Ali Majeed, Z. & Hasan Jasim, H. (2023). Digital Evaluation of Trueness and Fitting Accuracy of Co-Cr Crown Copings Fabricated by Different Manufacturing Technologies. Cureus, 15(6), e39819. https://doi.org/10.7759/cureus.39819

Bose, S., Ke, D., Sahasrabudhe, H. & Bandyopadhyay, A. (2018). Additive manufacturing of biomaterials. Progress in Materials Science, 93, 45–111. https://doi.org/10.1016/j.pmatsci.2017.08.003

Christopoulou, I., Kaklamanos, E. G., Makrygiannakis, M. A., Bitsanis, I., Perlea, P. & Tsolakis, A. I. (2022). Intraoral Scanners in Orthodontics: A Critical Review. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031407

Fu, W., Liu, S., Jiao, J., Xie, Z., Huang, X., Lu, Y., Liu, H., Hu, S., Zuo, E., Kou, N. & Ma, G. (2022). Wear Resistance and Biocompatibility of Co-Cr Dental Alloys Fabricated with CAST and SLM Techniques. Materials (Basel, Switzerland), 15(9). https://doi.org/10.3390/ma15093263

Gabor, A.‑G., Zaharia, C., Stan, A. T., Gavrilovici, A. M., Negruțiu, M.‑L. & Sinescu, C. (2017). Digital Dentistry — Digital Impression and CAD/CAM System Applications. Journal of Interdisciplinary Medicine, 2(1), 54–57.

Ganbold, B., Heo, S.‑J., Koak, J.‑Y., Kim, S.‑K. & Cho, J. (2019). Human Stem Cell Responses and Surface Characteristics of 3D Printing Co-Cr Dental Material. Materials (Basel, Switzerland), 12(20). https://doi.org/10.3390/ma12203419

Gao, B., Zhao, H., Peng, L. & Sun, Z. (2022). A Review of Research Progress in Selective Laser Melting (SLM). Micromachines, 14(1). https://doi.org/10.3390/mi14010057

Guoqing, Z., Junxin, L., Xiaoyu, Z., Jin, L. & Anmin, W. (2018). Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting. Journal of Materials Engineering and Performance, 27(5), 2281–2287. https://doi.org/10.1007/s11665-018-3351-5

Han, X., Sawada, T., Schille, C., Schweizer, E., Scheideler, L., Geis-Gerstorfer, J., Rupp, F. & Spintzyk, S. (2018). Comparative Analysis of Mechanical Properties and Metal-Ceramic Bond Strength of Co-Cr Dental Alloy Fabricated by Different Manufacturing Processes. Materials (Basel, Switzerland), 11(10), 1801. https://doi.org/10.3390/ma11101801

Huotilainen, E., Jaanimets, R., Valášek, J., Marcián, P., Salmi, M., Tuomi, J., Mäkitie, A. & Wolff, J. (2014). Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, 42(5), e259-65. https://doi.org/10.1016/j.jcms.2013.10.001

Kajima, Y., Takaichi, A., Kittikundecha, N., Htat, H. L., Cho, H. H. W., Tsutsumi, Y., Hanawa, T., Wakabayashi, N. & Yoneyama, T. (2021). Reduction in anisotropic response of corrosion properties of selective laser melted Co-Cr-Mo alloys by post-heat treatment. Dental materials : official publication of the Academy of Dental Materials, 37(3), e98-e108. https://doi.org/10.1016/j.dental.2020.10.020

Kassapidou, M., Franke Stenport, V., Hjalmarsson, L. & Johansson, C. B. (2017). Cobalt-chromium alloys in fixed prosthodontics in Sweden. Acta biomaterialia odontologica Scandinavica, 3(1), 53–62. https://doi.org/10.1080/23337931.2017.1360776

Kästle, I. (2014). Einfluss von Molybdän und Wolfram auf das Korrosionsverhalten zweier experimenteller Kobalt-Chrom-Legierungen mit unterschiedlichem Chromgehalt [Doctorate]. Medizinische Fakultät, Tübingen.

Kim, H. R., Jang, S.‑H., Kim, Y. K., Son, J. S., Min, B. K., Kim, K.‑H. & Kwon, T.‑Y. (2016). Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques. Materials (Basel, Switzerland), 9(7), 596. https://doi.org/10.3390/ma9070596

Kittikundecha, N., Kajima, Y., Takaichi, A., Wai Cho, H. H., Htat, H. L., Doi, H., Takahashi, H., Hanawa, T. & Wakabayashi, N. (2019). Fatigue properties of removable partial denture clasps fabricated by selective laser melting followed by heat treatment. Journal of the Mechanical Behavior of Biomedical Materials, 98, 79–89. https://doi.org/10.1016/j.jmbbm.2019.06.010

Ko, K.‑H., Kang, H.‑G., Huh, Y.‑H., Park, C.‑J. & Cho, L.‑R. (2022). Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co-Cr alloy fabricated by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 126, 105051. https://doi.org/10.1016/j.jmbbm.2021.105051

Koutsoukis, T [Theodoros], Zinelis, S [Spiros], Eliades, G., Al-Wazzan, K., Rifaiy, M. A. & Al Jabbari, Y. S [Youssef S.] (2015). Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques. Journal of prosthodontics : official journal of the American College of Prosthodontists, 24(4), 303–312. https://doi.org/10.1111/jopr.12268

Lee, W.‑F., Wang, J.‑C., Hsu, C.‑Y. & Peng, P.‑W. (2022). Microstructure, mechanical properties, and retentive forces of cobalt-chromium removable partial denture frameworks fabricated by selective laser melting followed by heat treatment. The Journal of Prosthetic Dentistry, 127(1), 115–121. https://doi.org/10.1016/j.prosdent.2020.06.038

Lewis, A. J. (1978). Dendritic crystallization. Australian dental journal, 23(4), 356–358.

Linn Htat, H., Takaichi, A., Kajima, Y., Kittikundecha, N., Kamijo, S., Hanawa, T. & Wakabayashi, N. (2023). Influence of stress-relieving heat treatments on the efficacy of Co-Cr-Mo-W alloy copings fabricated using selective laser melting. Journal of Prosthodontic Research. Vorab-Onlinepublikation. https://doi.org/10.2186/jpr.JPR_D_22_00283

Liu, Y., Hu, Q., Pan, Y., Wang, Y [Yinghui], Jiang, L., Lin, H [Honglei], Lin, D. & Cheng, H. (2021). The apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on three-dimensional oral mucosal model. Materials science & engineering. C, Materials for biological applications, 120, 111672. https://doi.org/10.1016/j.msec.2020.111672

Micovic, D., Mayinger, F., Bauer, S., Roos, M., Eichberger, M. & Stawarczyk, B. (2021). Is the high-performance thermoplastic polyetheretherketone indicated as a clasp material for removable dental prostheses? Clinical Oral Investigations, 25(5), 2859–2866. https://doi.org/10.1007/s00784-020-03603-y

Qian, B., Saeidi, K., Kvetková, L., Lofaj, F., Xiao, C. & Shen, Z. (2015). Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting. Dental materials : official publication of the Academy of Dental Materials, 31(12), 1435–1444. https://doi.org/10.1016/j.dental.2015.09.003

Revilla-León, M., Al-Haj Husain, N., Methani, M. M. & Özcan, M. (2021). Chemical composition, surface roughness, and ceramic bond strength of additively manufactured cobalt-chromium dental alloys. The Journal of Prosthetic Dentistry, 125(5), 825–831. https://doi.org/10.1016/j.prosdent.2020.03.012

Rutkūnas, V., Gečiauskaitė, A., Jegelevičius, D. & Vaitiekūnas, M. (2017). Accuracy of digital implant impressions with intraoral scanners. A systematic review. European journal of oral implantology, 10 Suppl 1, 101–120.

Salim, S., Salleh, N. M., Abidin, Z. Z., Yunus, N., Rahmat, R. & Ibrahim, N. (2022). Physicomechanical properties of cobalt-chromium removable partial denture palatal major connectors fabricated by selective laser melting. The Journal of Prosthetic Dentistry, 128(3), 530.e1-530.e7. https://doi.org/10.1016/j.prosdent.2022.06.013

Takaichi, A., Kajima, Y., Kittikundecha, N., Htat, H. L., Wai Cho, H. H., Hanawa, T., Yoneyama, T. & Wakabayashi, N. (2020). Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co-Cr-Mo alloys produced by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 102, 103496. https://doi.org/10.1016/j.jmbbm.2019.103496

Trevisan, F., Calignano, F., Lorusso, M., Pakkanen, J., Aversa, A., Ambrosio, E. P., Lombardi, M., Fino, P. & Manfredi, D. (2017). On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Materials (Basel, Switzerland), 10(1), 76. https://doi.org/10.3390/ma10010076

van Noort, R. (1987). Titanium: The implant material of today. Journal of Materials Science, 22(11), 3801–3811. https://doi.org/10.1007/BF01133326

Wang, J.‑H., Ren, J., Liu, W., Wu, X.‑Y., Gao, M.‑X. & Bai, P.‑K. (2018). Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy. Materials (Basel, Switzerland), 11(9), 1546. https://doi.org/10.3390/ma11091546

Wu, M., Dong, X., Qu, Y., Yan, J. & Li, N. (2022). Analysis of microstructure and fatigue of cast versus selective laser-melted dental Co-Cr alloy. The Journal of Prosthetic Dentistry, 128(2), 218.e1-218.e7. https://doi.org/10.1016/j.prosdent.2022.05.011

Xin, X., Chen, J., Xiang, N. & Wei, B. (2013). Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique. Cell biochemistry and biophysics, 67(3), 983–990. https://doi.org/10.1007/s12013-013-9593-9

Xing, X., Hu, Q., Liu, Y., Wang, Y [Yinghui] & Cheng, H. (2022). Comparative analysis of the surface properties and corrosion resistance of Co-Cr dental alloys fabricated by different methods. The Journal of Prosthetic Dentistry, 127(3), 497.e1-497.e11. https://doi.org/10.1016/j.prosdent.2021.11.019

Yan, X., Jiang, R., Li, W. & Lin, H [Hong] (2022). Oriented face-centered cubic to hexagonal close-packed martensitic transition, grain morphology, and mechanical properties of Co-Cr alloy fabricated by selective laser melting. The Journal of Prosthetic Dentistry, 127(2), 282–287. https://doi.org/10.1016/j.prosdent.2020.07.036

Yang, X., Xiang, N. & Wei, B. (2014). Effect of fluoride content on ion release from cast and selective laser melting-processed Co-Cr-Mo alloys. The Journal of Prosthetic Dentistry, 112(5), 1212–1216. https://doi.org/10.1016/j.prosdent.2013.12.022

Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E. & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4), Artikel 041101. https://doi.org/10.1063/1.4935926

Yi, J. H., Kang, J. W., Wang, T. J., Wang, X., Hu, Y. Y., Feng, T., Feng, Y. L. & Wu, P. Y. (2019). Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. Journal of Alloys and Compounds, 786, 481–488.

Zhou, Y., Li, N., Yan, J. & Zeng, Q. (2018). Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. The Journal of Prosthetic Dentistry, 120(4), 617–623. https://doi.org/10.1016/j.prosdent.2017.11.015

© by 3D Druck Tech AG